Convergence of Archimedean copulas
نویسندگان
چکیده
Convergence of a sequence of bivariate Archimedean copulas to another Archimedean copula or to the comonotone copula is shown to be equivalent with convergence of the corresponding sequence of Kendall distribution functions. No extra differentiability conditions on the generators are needed. r 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Some Results on a Generalized Archimedean Family of Copulas
Durante et al. (2007) introduced a class of bivariate copulas depending on two generators which generalizes some known families such as the Archimedean copulas. In this paper we provide some result on properties of this family when the generators are certain univariate survival functions.
متن کاملOn Generators in Archimedean Copulas
This study after reviewing construction methods of generators in Archimedean copulas (AC), proposes several useful lemmas related with generators of AC. Then a new trigonometric Archimedean family will be shown which is based on cotangent function. The generated new family is able to model the low dependence structures.
متن کاملOn the transformations of Archimedean copulas : Application to the non-parametric estimation of their generators
We study the impact of some transformations into the class of Archimedean copulas. We give some admissibility conditions for these transformations, and define some equivalence classes for both transformations and generators of Archimedean copulas. We extend the r-fold composition of the diagonal section of a copula, from r ∈ N to r ∈ R. This extension, coupled with results on equivalence classe...
متن کاملNo. 2006–29 LOWER TAIL DEPENDENCE FOR ARCHIMEDEAN COPULAS: CHARACTERIZATIONS AND PITFALLS
Tail dependence copulas provide a natural perspective from which one can study the dependence in the tail of a multivariate distribution. For Archimedean copulas with continuously differentiable generators, regular variation of the generator near the origin is known to be closely connected to convergence of the corresponding lower tail dependence copulas to the Clayton copula. In this paper, th...
متن کاملOn certain transformations of Archimedean copulas : Application to the non-parametric estimation of their generators
We study the impact of certain transformations within the class of Archimedean copulas. We give some admissibility conditions for these transformations, and define some equivalence classes for both transformations and generators of Archimedean copulas. We extend the r-fold composition of the diagonal section of a copula, from r ∈ N to r ∈ R. This extension, coupled with results on equivalence c...
متن کامل